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over an obstacle is the production of lee waves, which can
persist for long distances downstream, making the use ofA robust multigrid method for the incompressible Navier–Stokes

equations is presented and applied to the computation of viscous stretched grids unavoidable. When lee wave amplitudes
flow over obstacles in a bounded domain under conditions of neu- are large, wave-breaking can occur, and under these cir-
tral stability and stable density stratification. Two obstacle shapes cumstances streamline reversal leads to a local region ofhave been used, namely a vertical barrier, for which the grid is

statically unstable flow where mixing occurs. AdequateCartesian, and a smooth cosine-shaped obstacle, for which a bound-
modeling of such processes, as well as lee-side separation,ary-conforming transformation is incorporated. Results are given

for laminar flows at low Reynolds numbers and turbulent flows at requires the use of viscous equations with, preferably, a
a high Reynolds number, when a simple mixing length turbulence high Reynolds number and the use of a turbulence model.
model is included. The multigrid algorithm is used to compute

When lee waves are present, wave propagation (upstreamsteady flows for each obstacle at low and high Reynolds numbers
as well as downstream) means that time dependence shouldin conditions of weak static stability, defined by K 5 ND/fU ## 1,

where U, N, and D are the upstream velocity, bouyancy frequency, also be included. The range of phenomena is thus wide in
and domain height respectively. Results are also presented for the two dimensions, and even wider in three, with additional
vertical barrier at low and high Reynolds number in conditions of questions concerning the passage of fluid over or around
strong static stability, K . 1, when lee wave motions ensure that

isolated obstacles. Such flows present a challenge to thethe flow is unsteady, and the multigrid algorithm is used to compute
techniques of computational fluid dynamics, and comput-the flow at each timestep. Q 1997 Academic Press

ing times for single grid solution algorithms for the incom-
pressible Navier–Stokes equations are exceedingly long,

1. INTRODUCTION due to the ineffectiveness of standard iterative methods
at smoothing low frequency components of the solution

Multigrid methods are becoming an indispensable part errors. The multigrid technique represents errors on a hier-
of numerical procedures in many fields of application. The archy of successively coarser grids, rendering each fre-
achievement of the goal of grid-independent convergence quency band high relative to an appropriately coarse grid
rates allows the possibility of high resolution computations and amenable to effective smoothing, leading to rapid con-
being performed in computing times that are realistic and vergence rates. The objective of the work described here
affordable. Fundamental concepts tended to be demon- is an investigation of the effectiveness of the multigrid
strated in early work using the benchmark problem of a applied to the computation of steady two-dimensional flow
recirculating homogeneous steady laminar flow in a driven

over an obstacle, for neutral or stably-stratified conditions,cavity with simple Dirichlet boundary conditions and dis-
for Cartesian or non-Cartesian geometry, and for laminarcretized on a square Cartesian grid. Multigrid methods
or turbulent flow, and to provide pointers for dealing withhave since been applied much more widely to more general
flows which are unsteady.flows containing features such as inhomogeneity, Neumann

Smoothing algorithms proposed to solve the discreteboundary conditions, and discretized on nonuniform and/
Navier–Stokes equations are divided into two main catego-or curvilinear grids and requiring turbulence modeling.
ries, namely decoupled and coupled. Decoupled methodsThis paper reports an investigation of the application of
employ relaxation of each equation over the whole domain,multigrid methods to the computation of density-stratified
and cycle through the equations in turn to achieve theflow over obstacles. Such flows are of immediate relevance
coupling between variables. Pressure correction methodsto atmospheric flow over terrain, and provide insight into
are of this type, the most popular of which are variants ofactivities such as local and mesoscale meteorology and the
the SIMPLE (semi-implicit method for pressure-linkedprediction of dispersion of atmospheric contaminants. A

fundamental characteristic of the flow of a stratified fluid equations; Patankar [1]) algorithm. The suitability of the

411
0021-9991/97 $25.00

Copyright  1997 by Academic Press
All rights of reproduction in any form reserved.



412 M. F. PAISLEY

SIMPLE algorithm as a smoother for the multigrid has finest grid of any nested set while the implementation of
the multigrid is given in Section 4. The numerical resultsbeen analysed by Shaw & Sivaloganathan [2] and has been

demonstrated for a variety of test cases by Sivaloganathan are discussed in Section 5 with an interpretation of the
steady and unsteady flows obtained. The paper ends withand Shaw [3] and Lien and Leschziner [4, 5], for example.

Coupled methods, on the other hand, solve a locally cou- some conclusions and directions for future work in Sec-
tion 6.pled set of discrete equations followed by relaxation over

the whole domain, of which the SCGS (symmetric coupled
Gauss–Seidel; Vanka [6]) algorithm is probably the best 2. MATHEMATICAL MODEL
known. Analysis [7] suggests that the smoothing rates for

Equations of MotionSCGS are better than for SIMPLE for low Reynolds num-
bers, although for higher Reynolds numbers the issue is Under the Boussinesq approximation, in which density
unclear. Numerical experiments in [7] with the driven cav- variations are neglected in the advection terms in the mo-
ity problem confirmed this, with little to choose between mentum equations, the equations of motion describing
the two approaches for the highest Reynolds number on two-dimensional turbulent stratified flow are
the finest grid used. Other numerical results [8] suggest
that SCGS is superior, but only when implemented in lines,
not pointwise, if cell aspect ratios are large. Both ap- Dui
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proaches are in wide use, however, and, in the absence of
a clear consensus, the smoothing algorithm chosen here is ui

xi
5 0 (2)SIMPLE. A variant of SIMPLE was already implemented

in single-grid form and was thus the convenient choice.
This has the side effect that comparisons of computing Dq
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1 Hjj. (3)times between a single grid and a multigrid are readily

available. Coupled algorithms are poor as single-grid
smoothers and are not generally implemented in single-

Equations (1)–(3) respectively express conservation of mo-grid codes, so such speed-up factors are generally mean-
mentum in the two coordinate directions, the incompress-ingless.
ibility constraint, and the transport of the scalar variableThe trends expected in the results are clear from the
responsible for changes in density. Fh is the Froude num-outset: the effectiveness of the multigrid depends on the
ber, given by Fh 5 U/Nh, where U is the freestream veloc-measure of ellipticity in the discrete equations, which, for
ity, h the obstacle height, and N the bouyancy frequencythe steady Navier–Stokes equations, diminishes with in-
(constant for a linear density gradient). q is the densitycreasing Reynolds number. As the Reynolds number in-
scalar given by q 5 D(r 2 ro)/Dr, where r is the physicalcreases, multigrid performance in terms of residual reduc-
density and Dr the magnitude of the density change overtion per cycle is expected to decrease. In the case of an
the nondimensional domain height D. ẑ is the unit vectorunsteady flow, although special multigrid procedures have
in the vertical direction and Pr is the turbulent Prandtlbeen developed for parabolic problems ([9], for example),
number. tij is the Reynolds stress tensor and Hj the turbu-we adopt the common practice (see [10]) of regarding
lent buoyancy flux, both of which are defined later. Forthe time development as a series of steady solutions at
laminar flows Pr is replaced with the Schmidt number Sc,successive time steps, with each being the initial condition
taken to be 1000. The equations have been nondimension-for finding the next. In this case what is sought at each
alized by U, h, and the reference density ro.timestep is a set of small changes which are of high fre-

quency. The multigrid in this case may be expected to be
Domain and Boundary Conditions

less effective than for a steady flow, for most of the low-
frequency information (the underlying flow structure) is The computational domain and boundary conditions

considered in this paper are illustrated in Fig. 1 and arealready known and cycling over coarse grids will be of
little avail. Multigrid performance, when compared to sin- intended to mimic experimental apparatus where an obsta-

cle is towed through a water tank, see Castro et al. [11].gle grid performance, is thus expected to be poorer in the
individual timesteps of an unsteady computation than in The geometry for such an experiment would usually be

inverted. Uniform horizontal velocity and a linear densitya steady computation.
The organization of the paper is as follows: Section 2 profile are specified at inflow, while simple zero gradient

conditions are applied for all variables at outflow. A ‘‘mov-describes the details of the mathematical model, the com-
putational domain, and boundary conditions, and the tur- ing wall’’ condition is applied at the top of the domain and

corresponds to the bottom of the towing tank. Two obstaclebulence model used for the high Reynolds number cases.
Section 3 describes the numerical method used on the shapes have been used: a vertical barrier, for which the
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FIG. 1. Computational domain and boundary conditions for flow over (a) the vertical barrier and (b) the cosine hill.

computational grid is Cartesian, and an obstacle with and the mixing length is specified by the commonly used
relation 1/l 5 1/lo 1 1/kz, which limits the rise in mixingsmooth profile given by h(x) 5 0.5(1 1 cos(fx/1.8)) for

which the grid is curvilinear. Obstacles of both these kinds length (to a constant, lo). Here k is von Karman’s constant
and z is the distance from the nearest solid surface.have been used in experimental studies [11] and previous

computational work [12–14]. No-slip boundary conditions In stratified flow the eddy viscosity may be modified
according to the local conditions of stability. All indicationsare applied to the obstacle, and zero stress conditions up-

stream and downstream, mimicking a free surface. In the suggest that vertical fluctuations are damped out in the
presence of a stable density gradient, while they are magni-case of the cosine-shaped obstacle, no-slip conditions are

applied for uxu # 8, modeling the geometry of an obstacle fied once the gradient reverses, as in a recirculation region
or breaking lee wave. Defining the value of the local gradi-mounted on a base plate. The initial condition for all com-

putations is that of uniform horizontal velocity, and, in the ent Richardson number as
case of the unsteady computations, this corresponds to an
‘‘impulsive start.’’ Ri 5

1
F 2

h

q/z
S2

Turbulence Model and setting a level for the critical value, Ric , below which
turbulence cannot be sustained, the eddy viscosity becomesConvergence rates for multigrid methods tend to deteri-
(see Mason and Sykes [15]):orate with increasing Reynolds number, and especially so

when complex turbulence modeling is introduced; see Lien
and Leschziner [4, 5]. Here we use a simple mixing length
eddy viscosity model, where the components of the Reyn-

Stable (Ri . 0): Hnt(1 2 Ri/Ric)2

0
,
,

0 # Ri # Ric

Ric # Ri
(4)

Unstable (Ri , 0): nt(1 2 Ri)1/2. (5)olds stress tensor and the turbulent buoyancy flux are
given as

This formulation is equivalent to a modification of the
mixing length. Choosing a small value for Ric (say unity
or less) means that the viscosity in the flow outside thetij 5 nt Hui
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q

xj
,

neighbourhood of shear layers and recirculation zones has
no contribution from the turbulent eddy viscosity and the
flow is effectively laminar.where Pr is taken to be 0.9. The eddy viscosity is deter-

mined as nt 5 l2S, where the strain rate S is given by
3. NUMERICAL MODEL

Discretization
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Equations (1) and (3) are often expressed in the form
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of the two-dimensional convection-diffusion equation with of schemes can be proposed which preserve this property
(see [17]). One of the simplest is to take the harmonicsource term
mean of the values given by averaging neighbouring values
(central differencing) and second-order upwind interpola-f
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where f may stand for u, w, or q. The finite volume ap-
proach to approximating (6) is to integrate over a control

This is more conveniently expressed asvolume, of area DV and apply the divergence theorem. In
the case of a rectangular Cartesian grid, this gives

ff 5 fp 1 (fd 2 fp)f̂p ,

f

t
DV 1OFSuf 2 G

f
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zDDxG5 S DV, where the estimate now consists of the value immediately
upstream (first-order upwinding) plus a second-order flux-

(7) limited correction. Values of f̂p outside the range 0 #
f̂p # 1 correspond to extreme points in the flow, and only

where the summation is taken over the four sides of the the value immediately upstream is used. The effectiveness
control volume. In this work, Eq. (7) is discretized on a of this scheme is demonstrated in [13], where monotonic
staggered grid with the usual arrangement of variables and density profiles obtained are contrasted with those con-
associated control volumes, Fig. 2, and the problem reduces taining unphysical overshoot arising from the use of a non-
to that of providing estimates of flow quantities on cell monotonic scheme.
sides. Local interpolation is used for u, w, and G (G is Collecting the convective and diffusive contributions
constant for laminar flows), and the diffusive terms are from the four cell faces in this manner allows the steady
obtained by standard two-point differencing. The advec- part of Eq. (7) to be expressed in the form
tive terms, on the other hand, are dealt with using a second-
order flux-limited scheme designed to prevent spurious apfp 5 O amfm 1 Sf

p , (8)
oscillation, originally developed for unsteady inviscid com-
pressible flows (Van Leer [16]) and adapted as follows

where the summation is taken over the values at the centres(Leonard and Mokhtari [17]).
of the four neighboring cells, and the multiplying coeffi-Considering the flow across cell boundaries to be one-
cients contain the convective and diffusive flow rates. Thedimensional in directions normal to the cell faces, let fp source term includes the second-order corrections frombe the value of the flow variable (u, w, or q) at the centre
the convective scheme just described. Expression (8) is anof the cell under consideration, with fu and fd the corre-
implicit equation for the steady state solution, and com-sponding values at the centres of the cells immediately
prises a diagonally dominant set for each of the variablesupwind and downwind respectively. The procedure for
u, w, and q which is solved using the ADI method and aobtaining the estimate on the downwind cell face, ff , mid-
standard tridiagonal matrix algorithm.way between fp and fd is based on calculating the ratio

For unsteady flows, the time derivative in (7) is discret-of differences
ised using a second-order backward difference, namely,

f̂p 5
fp 2 fu

fd 2 fu
. 3fn11

p 2 4fn
p 1 fn21

p

2Dt
,

Values of f̂p in the range 0 # f̂p # 1 correspond to a
and Eq. (8) can now be regarded as an implicit equationmonotonic variation of f over the three cells, and a variety
for the solution at the new time level (n 1 1), with simple
modifications to the diagonal coefficients and the source
term,

Sap 1
3DV
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As far as the meshing arrangements are concerned, for theFIG. 2. Control volumes for staggered grid arrangement of (a) u
velocity, (b) w velocity, and (c) continuity and density. flows over the vertical barrier a Cartesian grid was used,
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Equation (12) is solved using four ADI sweeps to yield
the pressure corrections, which are used to update the
velocities through relationships (10).

In the case of stratified flows the additional transport
equation for the density field is now solved

aPqP 5 O aM qM 1 Sq
P , (13)

and this completes one outer iteration. The process is not
convergent without some form of underrelaxation, the ex-
act values for which are problem dependent. Typical values

FIG. 3. Fine grid continuity control volume and associated variables for the momentum equations were in the range 0.4–0.8,
for fine grid pressure correction step.

while 0.8–0.95 suffices for the scalar transport equation.
The value used for the addition of the pressure corrections
was in the range 0.25–0.4.

with the location of the barrier coinciding with a vertical
4. MULTIGRID IMPLEMENTATIONline of horizontal velocities. These velocities are forced to

zero by suitable modification of source terms, and
Coarse Grid Equationsneighbouring equation coefficients are modified appropri-

ately. For flows over smooth geometry, however, a simple It is well known that for linear operators the appropriate
transformation was used to stretch the vertical coordinates. multigrid procedure is the Correction Scheme (CS),
This introduces a volume scale factor and other metric whereas for nonlinear operators it is the Full Approxima-
terms into the momentum and scalar transport equations, tion Scheme (FAS)—see Brandt [19], for example. In the
and additional source terms arising from the curvilinear former, only corrections need be calculated on coarse grids,
coordinate derivatives. Many of the computational details while in the latter, the computation of changes in the solu-
can be found in Apsley [18]. tion requires the storage of the full restricted solution.

The Navier–Stokes equations are nonlinear in velocity but
linear in pressure, so a mixture of FAS and CS may beSIMPLE Smoothing Algorithm
used. Denoting the linear and nonlinear discrete operators

Following updates to the velocities via the solution of on the fine grid to be Lh and Nh respectively, the discrete
the discrete momentum equations, the SIMPLE algorithm horizontal momentum equation can be written symboli-
[1] employs relationships between corrections to velocities cally as
and adjacent pressures of the form (see Fig. 3)

Nhuh 1 Lh ph 5 0. (14)

u9w 5
Aw

aw
(p9W 2 p9P) and w9s 5

As

as
(p9S 2 p9P), (10) Suppose our current approximations to the exact hori-

zontal velocity uh and pressure ph are ũh and p̃h respectively.
These satisfy Eq. (14) to the extent of a residual R̃h,

where u9, w9, and p9 are the corrections to be added to
the current solution u*, w*, and p*. Use is then made of Nhũh 1 Lhp̃h 5 R̃h. (15)
the discrete continuity equation written in terms of veloc-
ity corrections Subtraction of (15) from (14) yields the relationship

Nhuh 5 Nhũh 2 Lhp9h 2 R̃h , (16)(u9e 2 u9w)Dz 1 (w9n 2 w9s )Dx 5 2Rc, (11)

where p9h 5 ph 2 p̃h. Relationship (16) is the basis of thewhere Rc is the continuity residual (mass imbalance) of the
coarse grid equations. To obtain the coarse grid form ofcurrent solution. Substituting (10) and the corresponding
this equation a restriction operator I2h

h is defined (see later)relations for u9e and w9n into (11) gives a Poisson-type equa-
to transfer the velocities and the residuals to the coarsetion for the pressure corrections
grid. The coarse grid equation thus takes the form

aPp9P 2 O aM p9M 5 2Rc. (12) N2hu2h 5 N2hI2h
h ũh 2 L2hp92h 2 I2h

h R̃h. (17)
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Starting from the initial conditions u2h 5 I2h
h ũh and p92h 5 vergence is achieved on the fine grid (the last term is

zero), no changes result from the coarse grid momentum0, a coarse grid pressure correction step is now used to
yield the new coarse grid velocities u2h and the coarse grid equations, leaving the continuity residuals unchanged from

their values calculated after restriction, and hence a zeropressure corrections p92h. Given a prolongation operator
Ih

2h the changes in the coarse grid velocities and the pressure right-hand side as required.
Substitution of the equivalent relationships to those ofcorrections are then transferred back to the fine grid and

the fine grid solution updated as follows: (10) into Eq. (22) yields an equation for corrections to
pressure corrections

uh 5 ũh 1 Ih
2h(u2h 2 I 2h

h ũh) ph 5 p̃h 1 I h
2hp92h. (18)

aP p0P 2 O aMp0M 5 2Rc
2h. (24)

Convergence on the fine grid implies that the residual
forcing term in (17) is zero, and the equation is satisfied This is then solved and the velocities and pressure correc-
by u2h 5 I2h

h ũh and p92h 5 0, in which case the calculated tions updated to complete the coarse-grid pressure-correc-
changes are zero and interpolation leaves the fine grid tion step.
solution unchanged. Following the pressure correction step the coarse grid

Following the definition of the coarse grid equivalents density equation can now be solved. Under-relaxation was
of relations (10), the SIMPLE iteration on the coarse grid required for the coarse grid iteration and used the same
proceeds in a manner similar to the implementation on the values specified for the fine grid.
fine grid described in the previous section. The procedure

Grid Coarsening, Restriction, Prolongation, and Cyclingneeds modification to allow the use of curvilinear grids,
however. Denoting the discrete continuity operator on the Coarse grids are generated in a manner which ensures
fine grid to be Ch and rewriting expression (11) gives that a coarse grid continuity cell is the sum of four fine

grid cells, as in [3]. Restriction of residuals is carried out by
Chuh 5 Chũh 2 Rc

h , (19) summation, with appropriate scaling to preserve integrals.
The restriction operator for flow variables, on the other

where, for convenience, ũ is used as the current approxima- hand, is based on taking the mean of nearest neighbouring
tion, rather than u*. values, as is commonly used in other implementations on

On a coarse grid this becomes staggered grids [3, 6]. For the coarse grid velocities this
amounts to taking the mean of the two nearest neighbors,
while for coarse grid pressures the mean of four nearestC2hu2h 5 C2h I 2h

h ũh 2 I 2h
h Rc

h , (20)
neighbors is taken; see Fig. 4. When grids are nonuniform

which is satisfied by the latest coarse grid approximation
u*

2h up to a residual Rc
2h,

C2hu*2h 5 C2h I 2h
h ũh 2 I2h

h Rc
h 1 Rc

2h . (21)

The correction equation for coarse grids corresponding to
(11) is obtained by subtracting (21) from (20), leaving

C2hu92h 5 2Rc
2h . (22)

This is identical in form to (11) and differs only in the
definition of the right-hand side, which, from (21), is
given by:

Rc
2h 5 C2hu*2h 2 C2h I2h

h ũh 1 I2h
h Rc

h. (23)

When Cartesian grids are used, the restriction operator
preserves mass fluxes (see next section), so that the last
two terms in (23) cancel, leaving the first term only. When FIG. 4. Coarse grid continuity control volume (composed of four fine
grids are curvilinear, however, mass fluxes are not pre- grid continuity control volumes, shown shaded) and associated variables

for coarse grid pressure correction step.served, and all three terms must be evaluated. When con-
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TABLE Ithe velocity means are weighted according to the lengths
of the sides of fine-grid continuity cells. This has the effect Multigrid Results for the Driven Cavity
of preserving mass fluxes for stretched Cartesian grids, so

Re 32 3 32 64 3 64 128 3 128that a coarse grid continuity residual is the sum of the four
corresponding continuity residuals on the fine grid (leading

100 7 6 6to the cancellation of the last two terms in (23)). For any
3.0s 10.8s 47.1s

grid, care must be taken over the implementation of veloc- 29.4 25.1 24.7
ity boundary conditions on coarse grids, for example at 3.2 13.0 45.3

400 11 9 8outflow, to ensure that continuity is maintained.
4.6s 16.1s 1m 3sFollowing the iterations on the coarse grid, the changes

45.1 37.4 33.0to the velocity field and the pressure corrections are pro-
2.9 9.4 31.2

longated to the fine grid using standard bilinear interpola- 1000 15 12 9
tion. For the stratified flows it was found that, although 6.1s 24.4s 1m 13s

59.8 56.7 38.4the underlying discretisation guarantees monotonicity,
4.5 7.6 23.8destabilising (and unphysical) negative densities could be

generated on the fine grid as a result of the interpolation
Note. The four figures given are the number of multigrid cycles, the

of density changes. This was prevented by a simple modifi- cpu time taken, the number of work units, and the speed-up factor over
cation as follows: the corresponding single-grid computation.

qh 5 Max[q̃h 1 I2h
h (q2h 2 I2h

h q̃h ), 0].
The converged flow fields agree well with other published
results [3, 6] and are discussed no further. The multigrid

This was only necessary in the first two or three cycles performance is summarized in Table I, however, where
when density changes from the coarse grids can be large, four performance measures are given for each case. These
for tests showed that removing it thereafter had little effect. are, in order of appearance, the number of multigrid cycles
According to analysis [2] and numerical experiments [3], required, the computing time taken, the corresponding
the smoothing rate (residual reduction per cycle) of the number of work units (one work unit is the time taken for
SIMPLE algorithm is always greater than 0.5 and in such one fine grid iteration) and, for completeness, the speed-up
cases Brandt’s [19] recommendation is the use of W cycles ratio over the corresponding computation on a single grid.
over V cycles (see [19] for definitions). For almost all the Two main observations are apparent. First, the number
computations described here it was found that W cycles of multigrid cycles is relatively insensitive to increasing grid
were more effective than V cycles. This was certainly true density, so that computing times increase approximately
for all the steady computations, the only exceptions being linearly with grid refinement, demonstrating that optimal
some of the unsteady computations on coarse grids. multigrid performance is being achieved. In fact, the num-

ber of cycles required tends to fall somewhat as the grid
is refined, leading to reductions in the number of work5. RESULTS
units required, which contrasts with the results in [3] for

Initial test runs with the multigrid method described a similar pressure correction approach, where the opposite
above were made using the standard test problem of homo- trend is seen. The reason for this is unclear, although it
geneous recirculating flow in a driven cavity. The finest may relate to differences between the methods regarding
grid used contained 128 3 128 cells, from which four other the treatment of boundaries when staggered grids are used.
grids are defined, the coarsest containing 8 3 8 cells. Al- Second, the number of cycles required increases with in-
though the code runs successfully with the coarsest grid creasing Reynolds number, so that computing times on a
containing 4 3 4 cells, and even 2 3 2, the computing times particular grid, and the number of work units required,
were marginally longer, presumably because the overheads increase by a factor up to twofold. This roughly concurs
associated with the grid transfers outweigh the efficiency with other data for the pressure correction method [3],
savings of computing on the yet coarser grid. Fixed W- although the corresponding times and numbers of work
cycles were used, starting from zero initial conditions. Each units data for the coupled method (SCGS [6, 7]) show
multigrid cycle contained one presmoothing iteration, one increases of up to threefold for the same range of Reynolds
postsmoothing iteration and up to ten iterations to solve numbers. Few performance indicators are given for the
the equations on the coarsest grid. Convergence was moni- multigrid pressure correction results in [5], and although
tored using sums of absolute values of residuals over the the speed-up ratios over the corresponding single grid com-
whole domain and a computation was terminated when putations given here are similar to those in [5], these are

inadequate as a true guide.the maximum sum over the three equations fell below 1024.



418 M. F. PAISLEY

These results indicate that the multigrid method devel- which a typical computation would quickly diverge. Ranges
of the under-relaxation parameters for all computationsoped is robust and efficient for flow in a driven cavity. The

application of a multigrid to the flow of an incompressible were 0.4–0.8, 0.25–0.4, and 0.8–0.95 for the momentum
fluid over an obstacle in conditions of varying stability is equations, the pressure correction step, and the density
somewhat more challenging, however. As to the flow field equation respectively, with the values required decreasing
expected, according to linear theory (for example, Turner in general as the grid density, the Reynolds number, and
[20]) the flow of a stratified fluid in a bounded domain of the stratification increased. The computing times given are
depth D is characterized by the parameter K 5 ND/fU, for double-precision arithmetic on a Silicon Graphics Indy
which is the ratio of the velocity of the fastest internal workstation. Single grid results were computed where pos-
gravity wave mode to the freestream velocity. The value sible to provide meaningful speed-up factors. The single
of K is related to the Froude number via the relationship grid computations were optimised in terms of the under-
K 5 D/fhFh , and the integer part of K governs the number relaxation parameters, and were run with a block correc-
of modes of internal gravity waves present in a steady flow, tion routine applied to the pressures. This considerably
with n modes whenever n , K # n 1 1. For n 5 0 no enhanced the single grid results, but did not gain anything,
steady lee waves are expected (their speed of propagation and was not used, in the multigrid computations.
is lower than freestream and they are swept downstream)
and all available evidence suggests that flows in this regime Steady Flows
achieve a steady state. For n $ 1, however, the flow may

Results are presented first for the vertical barrier withbe unsteady, with propagation of lee waves downstream,
Re 5 50. This Reynolds number was originally chosenand, since the speed of internal waves may now exceed
[12] because the separation length in neutral flow roughlythe freestream velocity, upstream in addition. The results
matches that seen in high Reynolds number experiments.presented here for stratified flows over obstacles are there-
Streamlines for the four cases computed are shown in Fig.fore in two groups, steady and unsteady flows. The ratio
5, where a reduction in the length of the separated regionof domain depth to obstacle height was kept fixed in all
as K increases is seen as the flow responds to the increasingcases at D/h 5 5. Steady flows were computed at conditions
vertical restoring force. A lee wave is clearly visible whengiven by K 5 0 (Fh 5 y, neutral flow), K 5 0.5 (Fh 5
K 5 1 (Fig. 5d), for which case disturbance upstream is3.180), K 5 0.8 (Fh 5 1.989), and K 5 1.0 (Fh 5 1.592),
evident in the displacement of streamlines compared withwhile the unsteady cases were computed at K 5 1.5
the computations at lower values of K. The convergence(Fh 5 1.061). The value K 5 1.0 represents the transition
performance of the multigrid scheme is given in Table II.to the unsteady regime.
The number of cycles required at all levels of stratificationConvergence in these computations was monitored in
tends to fall slightly with grid refinement, and hence com-the same way as for the driven cavity, with termination
puting times increase approximately linearly, demonstra-when the maximum sum over the three (or four) equations
ting that convergence rates are being achieved which arefell below 1024. In the unsteady cases this criterion marked
independent of the grid size used, for both neutral andconvergence for an individual timestep. Results for the
stably stratified flow. As a consequence this leads to sig-steady computations were obtained for three grids covering
nificant gains in computing time over the single grid compu-220 # x/h # 60 and 0 # z/h # 5, the cells in each number-
tations (a factor of approximately 30 on the finest grid).ing 80 3 20, 160 3 40, and 320 3 80. The coarsest grid
The number of work units required is generally greaterused in all computations was 20 3 5, allowing the use of
than for the driven cavity problem, but this might be ex-a maximum of three, four, or five grid levels respectively.
pected, given the nonuniformity in the grid, the unidirec-The grids are nonuniform, with the minimum horizontal
tionality of the flow, and the more complicated boundaryspacing on the finest grid for both obstacles being 0.05h.
conditions. The number of work units falls with grid re-For the barrier, the vertical spacing around the tip is 0.05h,
finement, as a consequence of the fall in the number ofwhile for the cosine-shaped hill the vertical spacing at the
cycles, but rises with increasing stratification, reflecting thesurface is 0.025h (but due to the staggering the first grid
increasing coupling in the equations.point above the surface is at z/h 5 0.0125). All multigrid

The corresponding streamlines for laminar flow over thecomputations are for fixed W-cycles, starting from an initial
cosine obstacle at Re 5 100 are shown in Fig. 6, wherecondition of uniform flow. The numbers of iterations in
features similar to those seen in the flow over the barrierthe different parts of the multigrid cycle are kept fixed in
are evident, with the addition of a horizontal boundaryall cases, with 1 presmoothing iteration, 2 postsmoothing
layer. The length of the separated flow decreases, withiterations, and 10 iterations to solve the equations on the
separation being almost completely inhibited when K 5coarsest grid. For the stratified cases on the finer grids,
1. Upstream disturbance at this value is again evident, witheach computation was initialized with 10 fine grid iterations

to allow partial development of the flow field, without the boundary layer noticeably thicker. The downstream
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for the barrier, despite the higher Reynolds number and
the non-Cartesian grid. The numbers of work units are
also correspondingly slightly higher, but show the same
trends with grid refinement and increasing stratification.
Convergence rates are again approximately independent
of the grid size, with a speed-up factor of similar magnitude
being achieved for neutral flow, but rather smaller for the
stratified flows.

For the turbulent cases, a Reynolds number of 10,000
was used, which is typical of conditions in a towing tank,
together with the mixing length turbulence model outlined
earlier, with the mixing length parameter lo set to 0.2. For
the stratified cases the critical value for the Richardson
number, Ric, was taken to be infinite, implying no modifi-
cation of eddy viscosity with stratification. Streamlines for
the high Reynolds number flows over the vertical barrier
are shown in Fig. 7, which exhibit features similar to those
in the laminar cases considered earlier, with minor differ-
ences. The first is that in the wake, streamlines recover
their freestream elevations much more slowly than in the
laminar cases. The second is that the lee wave, evident for
K 5 1 in the laminar case, is not seen here. The reason
for this relates to the value of Ric used. Computations with
small values (Ric # 1) lead to large amplitude lee waves,
with breaking, for which no steady solution is possible.
The large value of Ric actually used damps the solution
and allows a steady state to be achieved. The multigrid
performance is given in Table IV, where computing times
per cycle are now around 30–40% greater than the corre-
sponding laminar flows (Table II). The numbers of cycles
required for a particular case are very similar to those for

FIG. 5. Flow over the vertical barrier, Re 5 50. (a) Fh 5 y, K 5 0 the laminar cases, and convergence rates independent of
(neutral flow); (b) Fh 5 3.180, K 5 0.5; (c) Fh 5 1.989, K 5 0.8; the grid are achieved, with only slightly smaller speed-up
(d) Fh 5 1.592, K 5 1.0.

TABLE II
lee wave at this stratification is more pronounced than

Multigrid Results for Flow over the Vertical Barrier, Re 5 50
for the barrier, possibly because the Reynolds number
is higher, but also perhaps because the boundary layer K 80 3 20 160 3 40 320 3 80
increases the apparent height of the obstacle, giving a

0.0 15 12 12somewhat larger effective value of K. Convergence diffi-
11.9s 42.4s 3m 14sculties were experienced for this case, but as mentioned
63.6 51.4 46.6

above, the value K 5 1 represents the transition to the 2.8 9.1 28.8
unsteady regime, or the explanation may simply be that 0.5 18 13 12

22.6s 1m 9s 5m 21sthe discrete equations are not dissipative enough and some
98.0 67.5 63.7form of double discretisation [19] is required. (The stream-

2.9 8.1 26.2lines shown and the data discussed later are generated from
0.8 21 16 12

the results of the corresponding single grid computation, 24.9s 1m 32s 5m 21s
which converged satisfactorily, if somewhat slowly). The 107.6 89.8 63.6

3.5 9.4 35.5multigrid performance is shown in Table III, where com-
1.0 16 16 13puting times per cycle are now around 40% greater than

21.9s 1m 32s 5m 39sfor the barrier due to the inclusion of the coordinate trans-
94.8 90.0 67.4

formation. The numbers of cycles required for convergence 3.5 7.8 28.0
for a particular computation are only a little higher than



420 M. F. PAISLEY

Before discussing the effects of the stable density strati-
fication on the downstream wake, some comments are
appropriate regarding the dependence of the results on
the grid size. In general, the recirculation zone tends to
lengthen and the pressure drag rises with refinement of
the grid. The overall effects in these computations are
consistent with the second-order discretisation used, in that
changes to such quantities fall by approximately one-quar-
ter when the number of grid cells grid is doubled in each
direction (so grid spacings are halved). No attempt was
made to concentrate grid points at the downstream extent
of the recirculation, and typical changes in its length on
refinement to the 320 3 80 grid ranged from around 4%
for long recirculation zones, in neutral flow for example,
to less than 1% for the shorter recirculation zones. Changes
in the corresponding values of the drag were of the same
order. The exception to this was the high Reynolds number
flow over the cosine obstacle, where simple grid refinement
effects are complicated by the wall function treatment of
the solid surface. This approach is known to be inadequate,
especially for recirculating flow, and changes on grid re-
finement were significantly greater.

The variations in pressure drag and separation length
for these four sets of results are shown in Figs. 9 and 10,
where both quantities are normalised by their respective
values in neutral flow. In all cases both quantities fall as
K increases from zero to unity, consistent with previous
data [11–13]. In three of the cases here the fall in drag
(Fig. 9) is monotonic, the exception being the low Reynolds
number flow over the cosine hill, where the decrease in
drag at K 5 1 due to the reduction in separation length is

FIG. 6. Flow over the cosine obstacle, Re 5 100. (a) Fh 5 y, K 5

0 (neutral flow); (b) Fh 5 3.180, K 5 0.5; (c) Fh 5 1.989, K 5 0.8;
(d) Fh 5 1.592, K 5 1.0.

TABLE III

Multigrid Results for Flow over the Cosine Obstacle, Re 5 100
factors. The number of work units for a particular case is

K 80 3 20 160 3 40 320 3 80only marginally higher than for the corresponding lami-
nar flow.

0.0 14 13 13The final set of steady computations is for high Reynolds
19.5s 1m 16s 5m 17s

number flow over the cosine obstacle. The streamlines are 74.9 66.0 58.2
shown in Fig. 8, which show significant differences from 2.1 10.3 35.4
the results of the corresponding laminar computations. The 0.5 20 17 11

35.8s 2m 29s 7m 26sboundary layer is now much less evident, and the lengths
109.2 102.9 67.5of the recirculation regions are generally much shorter.

1.5 5.4 21.9Upstream disturbance is again evident at K 5 1, with a
0.8 17 18 15

very small amount of upstream separation, and the lee 34.7s 2m 37s 9m 45s
wave for this case is again damped out due to the parame- 106.7 111.3 84.1
ters used in the turbulence model. The multigrid perfor- 3.4 5.6 18.1

1.0 — — 20*mance is given in Table V, where computing times per
— — 13m 30scycle are around 60% greater than for the corresponding
— — 116.5laminar cases (Table III). Convergence rates are still ap-
— — —

proximately independent of the grid size, although the
number of work units now is significantly greater than for Note. The asterisk indicates that a fully converged solution was not

obtained—see text.the laminar cases.
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initial condition on the next finer grid in the sequence,
and so on, until the finest grid is reached, when the usual
multigrid algorithm can proceed starting from a good initial
approximation. This technique cannot be used in the con-
text of an unsteady flow, however, and it is to this that we
now turn.

Unsteady Flows

Many phenomena of interest in meteorological flows are
only elucidated by including time-dependence. Here we
give a brief indication of what might be expected from the
multigrid algorithm when implemented in the context of
an unsteady flow. For this we consider the time-dependent
flow over the vertical barrier at K 5 1.5 (Fh 5 1.061), in
laminar (Re 5 50) and turbulent (Re 5 10000) conditions.
Propagation of disturbances both upstream and down-
stream can now occur, and the computational grid was
extended in both directions to cover 2100 # x/h # 100,
and the dimensions of the three grids used increased to
100 3 20, 200 3 40, and 400 3 80. According to linear
theory, upstream reflections are due back in the neighbour-
hood of the barrier at a nondimensional time of Ut/h 5 240.
Computations were performed up to a nondimensional time
of Ut/h 5 200 on the three grids at both Reynolds numbers,
and using four time steps, namely U Dt/h 5 4.0, 2.0, 1.0, and
0.5. For the high Reynolds number computations lo 5 0.1
and Ric 5 0.25.

The flow in a channel for values of K greater than unity
is characterized by a periodic oscillation, first demonstrated
experimentally [11] and subsequently verified numerically
with the inviscid [21, 22] and viscous [13] equations. Rott-

FIG. 7. Flow over the vertical barrier, Re 5 10000. (a) Fh 5 y,
man et al. [22] explain the oscillation in terms of a waveK 5 0 (neutral flow); (b) Fh 5 3.180, K 5 0.5; (c) Fh 5 1.989, K 5 0.8;
mode with stationary group velocity (with respect to the(d) Fh 5 1.592, K 5 1.0.

TABLE IV
presumably more than offset by the wave drag associated

Multigrid Results for Flow over the Vertical Barrier, Re 5 10000
with the lee wave visible in the streamlines (Fig. 6d). The
fall in separation length (Fig. 10) is also monotonic for K 80 3 20 160 3 40 320 3 80
three cases, the exception being the high Reynolds number

0.0 14 13 11flow over the cosine hill, where the separation length first
19.0s 1m 12s 4m 23sincreases before decreasing at K 5 1.
72.5 63.9 47.6

Summarizing the multigrid data for the steady flows, it 2.4 5.7 26.2
is clear that computing times with the multigrid algorithm 0.5 15 15 12

27.0s 1m 50s 7m 03sare increasing approximately linearly with increasing grid
84.4 65.7 65.6size for both neutral flow and stably stratified flow, leading

3.0 5.3 21.3to significant reductions in computing time required on
0.8 15 16 13

the finest grids. Although the greatest reductions are for 27.0s 1m 57s 7m 44s
the laminar flows, significant reductions are being achieved 84.7 85.4 72.0

3.2 6.1 24.4for the high Reynolds number flows as well, particularly
1.0 — — 18in the case of the vertical barrier. Computing times could

— — 10m 24sbe reduced further by the use of a full multigrid (see [19]),
— — 96.8

where computations are initialised on the coarsest grid, and — — —
a partially converged solution is interpolated to provide the
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TABLE V

Multigrid Results for Flow over the Cosine Obstacle,
Re 5 10000

K 80 3 20 160 3 40 320 3 80

0.0 18 16 18
45.2s 2m 44s 12m 25s

109.6 92.7 85.3
1.8 4.8 17.7

0.5 21 21 20
1m 6s 4m 33s 19m 27s

133.2 129.8 105.6
1.6 3.0 8.6

0.8 19 21 25
1m 0s 4m 33s 26m 34s

121.4 129.1 142.8
2.6 5.2 16.4

1.0 — — 33
— — 37m 5s
— — 233.0
— — —

low frequency information in the flow is already present,
and a set of small changes of high frequency are sought.
Smoothing the already smooth low frequencies on coarse
grids is not expected to help. Furthermore, because the
frequency of the information sought increases with de-
creasing timestep, the multigrid performance is expected
to degrade as the timestep falls. This is illustrated in Table
VI for typical timesteps in the unsteady flow over the
vertical barrier at Re 5 50. For a particular size of timestep,

FIG. 8. Flow over the cosine obstacle, Re 5 10000. (a) Fh 5 y, convergence rates which are approximately grid-indepen-
K 5 0 (neutral flow); (b) Fh 5 3.180, K 5 0.5; (c) Fh 5 1.989, K 5 0.8; dent are being achieved as before, and the number of work
(d) Fh 5 1.592, K 5 1.0. units remains approximately constant. The amount of work

required decreases as the timestep falls, as expected, but
the advantage over a single grid computation also de-
creases, and in all cases is now very much less than in theobstacle), and derived a formula for the oscillation period

closely matching that observed in the experiments and
numerical simulations. The amplitude of the oscillation
increases with Reynolds number, and while at Re 5 50 it
is somewhat small, at higher Reynolds numbers it becomes
very significant. The normalized drag for the flow at
Re 5 10000 is shown in Fig. 11 and as the values at the
maxima imply, the actual drag may be far in excess of its
corresponding value in neutral flow, because of the large
contribution due to wave drag. The oscillation in drag is
in phase with the oscillating amplitude of the wave mode
over the obstacle, which is illustrated in Fig. 12, where
instantaneous streamlines are shown at the high and low
drag states respectively. Wave breaking occurs in the wave
troughs and is clearly visible in the second trough in
Fig. 12b.

The trends, in terms of the convergence characteristics, FIG. 9. Normalised drag: (Vertical barrier) e, Re 5 50; h, Re 5

10000; (Cosine obstacle) n, Re 5 100; s, Re 5 10000.were anticipated in the Introduction. At each timestep the



MULTIGRID COMPUTATION OF STRATIFIED FLOW 423

FIG. 10. Normalized separation length: (Vertical barrier) e, Re 5

50; h, Re 5 10000; (Cosine obstacle) n, Re 5 100; s, Re 5 10000.

FIG. 12. Instantaneous streamlines for unsteady flow over the vertical
barrier, Re 5 10000, Fh 5 1.062, K 5 1.5. (a) High drag state, Ut/h 5

corresponding steady computations (Table II). Table VII 125; (b) low drag state, Ut/h 5 150.

gives the results for Re 5 10000, where a similar pattern
is seen, with rather lower speed-up factors. These results
suggest that to gain the maximum advantage from the computing time for the finest grids used. The gains ob-
multigrid algorithm in an unsteady computation, a high- tained for the stratified cases are of the same order as
order timestepping scheme should be chosen to allow the those obtained in conditions of neutral flow. The gains
use of the maximum timestep permitted by accuracy con- generally decrease with Reynolds number, as expected,
siderations. but are still significant for the high Reynolds number com-

putations, especially for the vertical barrier.
6. CONCLUSIONS Results have also been presented for unsteady flow over

the vertical barrier at low and high Reynolds number in
In this paper we have presented a robust multigrid conditions of strong static stability. The multigrid algo-

method for the efficient solution of the incompressible rithm was used to compute the flow at each timestep and
Navier–Stokes equations with appropriate extensions for the results indicate that although the gains in computing
dealing with inhomogeneous flow. It has been demon-
strated for the test problem of steady flow in a driven
cavity and steady viscous flow over obstacles in a bounded

TABLE VIdomain under conditions of neutral stability and stable
density stratification. For the two obstacle shapes used, Multigrid Results for a Typical Timestep in the Computation
results have been given for laminar flows at low Reynolds of Unsteady Flow over the Vertical Barrier, Re 5 50
numbers and turbulent flows at a high Reynolds number,

U Dt/h 100 3 20 200 3 40 400 3 80when a simple mixing length turbulence model was in-
cluded. The results indicate that in all the cases tried con-

4.0 11 10 12
vergence rates are achieved which are approximately inde- 14.0s 1m 7s 5m 47s
pendent of the grid size used, leading to large gains in 42.6 48.0 46.7

1.3 2.2 7.2
2.0 9 8 8

11.8s 54.2s 3m 56s
35.4 38.3 36.3

1.1 1.8 6.7
1.0 8 8 8

10.6s 54.2s 3m 56s
30.3 37.3 31.8

1.0 1.1 4.6
0.5 7 7 6

9.4s 47.8s 3m 0s
26.6 32.7 27.3

FIG. 11. Normalised drag for unsteady flow over the vertical barrier: 1.1 1.2 3.4
Re 5 10000, Fh 5 1.062, K 5 1.5.
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